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Metastable dynamics above the glass transition
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The element of metastability is incorporated in the fluctuating nonlinear hydrodynamic description of
the mode coupling theory (MCT) of the liquid-glass transition. This is achieved through the introduc-
tion of defect density variable n into the set of slow variables with mass density p and momentum density
g. As afirst approximation, we consider the case where motions associated with n are much slower than
those associated with p. Self-consistently, assuming one is near a critical surface in the MCT sense, we
find that the observed slowing down of the dynamics corresponds to a certain limit of a very shallow
metastable well and a weak coupling between p and n. The metastability parameters, as well as the ex-
ponent describing the observed sequence of time relaxations, are given as smooth functions of the tem-
perature without any evidence of a special temperature. We then investigate the case where the defect
dynamics is included. We find that the slowing down of the dynamics corresponds to the system arrang-
ing itself such that the kinetic coefficient governing the diffusion of the defects approaches from above a

JUNE 1995

small temperature-dependent value.

PACS number(s): 64.70.Pf, 64.60.My, 66.30.Lw

I. INTRODUCTION

While there has been considerable progress recently in
the development of theories of relaxation near the liquid-
glass transition, these theories have ignored one of the
fundamental defining qualities of the problem: These sys-
tems are metastable. In this paper, we introduce the ele-
ment of metastability into a framework that connects
with the mode coupling theory (MCT) [1]. We find a
theoretical pictur? that is closer to the observed experi-
mental picture than the conventional MCT, since it is
freed from the idea of a sharp transition temperature T,.

The mode coupling theory has been very successful in
explaining the very elaborate sequence of time relaxations
in supercooled liquids that has been observed in many ex-
periments [2-6]. Despite its success, however, the
current status of the MCT is not without questions and
controversies. An important question associated with the
MCT concerns the temperature dependence of the
theory. The conventional MCT [1,7-9] views the glass
transition as a sharp ergodic-nonergodic transition as the
temperature T approaches the ideal glass transition tem-
perature T, well above the calorimetric glass transition
temperature T,. According to the conventional MCT,
the relaxation sequence occurs only near T~ T, and in
particular the so-called von-Schweidler relaxation and
the stretching are confined to the region T'>T,. This
sharp temperature dependence is clearly in contrast with
the universal behavior of Dixon et al. [6], whose data
cover any reasonable choice of T,. Also, as shown in
other recent experiments [10], the existence of a well-
defined temperature T, well above T, is very doubtful.
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In this formulation of the MCT, the exponents governing
the time relaxations are temperature independent, just as
those involved in a second-order phase transition. This is
again in disagreement with recent experiments. In par-
ticular, Dixon et al. finds the stretching exponent B
weakly temperature dependent, which means, by virtue
of the universal relationship discussed by Kim and
Mazenko [11], that the von-Schweidler exponent b also
depends on temperature. since the MCT predicts [9] that
the exponent b is related to the so-called critical exponent
a through a temperature-independent relation, this also
implies that a is a temperature dependent.

There exist recent efforts [12] to reconcile the
discrepancies between experiments and the MCT, which
include the cutoff effect, discovered by Das and Mazenko
[13], into the conventional MCT but still assume a round-
ed transition around T ~T,. This attempt, however,
ends up by adjusting as many as seven independent pa-
rameters to fit experimental data. A simpler interpreta-
tion of the situation is that the MCT, despite all the
successes, needs to be reformulated at a more fundamen-
tal level such that it is not tied to the notion of a sharp
transition temperature.

In Ref. [14], we proposed a model where defects and
metastability play an important role in the glass transi-
tion, in an attempt to reformulate the MCT so that it
would be compatible with experiment. Although this
theory does not provide any clear explanation for the
scaling result of Ref. [6], it does result in a smooth tem-
perature variation without any indication of a special
temperature Ty. The various exponents, according to the
model, are weak functions of temperature. In this paper,
our main focus is to elaborate on the detailed construc-
tion of the model, which was omitted in Ref. [14], and to
further elaborate on the dynamics of the defects that we
treated using a simplified assumption of the previous
work.
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The model introduced in Ref. [14] is based on the in-
troduction of the defect variable n into the set of slow
variables consisting of mass density p and momentum
density g, in the fluctuating nonlinear hydrodynamic
(FNH) description of the MCT [13]. The introduction of
the defect variable would be required in a rigorous hydro-
dynamic description of crystalline solids, along with the
Nambu-Goldstone modes associated with broken transla-
tion symmetry [15]. Although there is no broken con-
tinuous symmetry involved in the glass transition, we
consider the situation where this variable plays a role in
the transition [16]. The best analogy to the present case
would be the situation where one considers an order pa-
rameter in the disordered state. We do not need a micro-
scopic definition for the defect variable here. The only
information we need here is that the defect density has
the usual Poisson bracket relations of a scalar variable
with momentum density g, that they are metastable, and
that they interact weakly with the mass density.

One of the key assumptions in the model is that
motions associated with defect density i have a very long
time scale compared to that of density fluctuation. This
is realized in the model via an explicit double-well poten-
tial A (n) for the defect variable, with the metastable de-
fect density 7 associated with the minimum of the higher
well. A very small diffusion coefficient I', for n results
from a rolling around in a shallow metastable well. We
find that the coupling between the mass density and the
defect variables slows down the defect motion further.
The coupling also enables the slow dynamics of defects to
influence the density dynamics. Over a significant time
period when the defect is trapped within the metastable
well, the defect autocorrelation function ¥(¢) can be re-
garded as a constant, while the density autocorrelation
function ¢(¢) displays the relaxation sequence, leading to
the von-Schweidler regime. Under this assumption, we
find that the observed stretched dynamics correspond to
a self-consistent limit of weak coupling and a low activa-
tion barrier for the defect. As will be discussed below,
this limit corresponds to the situation where the coupling
energy is weak enough not to destroy the metastable de-
fects but still strong enough for the slow dynamics of de-
fects to result in the slowing down of the mass density
variable. In this limit, the parameters describing the
double-well potential and the coupling, as well as the ex-
ponents of the relaxation sequences, are self-consistently
determined as smooth functions of temperature.

Since the defect variable is diffusive, the defect auto-
correlation function () decays, to linear order, as
~exp(—y,t), where in terms of the bare diffusion
coefficient T, y,=h"(7)T,q* at wave number g. Self-
consistently we find, in the time regime where ¥(¢) can be
regarded as a constant, that 2"’ (7 ) must be small, i.e., the
metastable wells become very shallow and broad. As one
moves into the later stage of relaxation, however, we ex-
pect nonlinear corrections to ¥, become important.
Therefore, we need to consider the dynamics of the de-
fects and their coupling to the density fluctuations by in-
cluding the renormalization of ¥, in the evolution equa-
tion for ¥(z). In this paper, we obtain a set of coupled
equations for ¢(¢) and ¥(¢) governing the dynamics of
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both density and defect variables.

We find, through mainly numerical investigations, that
the extended model, including the defect dynamics, pro-
vides considerable self-consistent information on the na-
ture of the defects near the glass transition. In particular,
we find that the bare value of y,, is significantly restricted
when the observed stretching occurs. In fact, the long
time scale of the defect variable corresponds to the case
where the system arranges itself such that y, is close to
some small temperature-dependent value y{. The system
seems to pick out its own defect potential and diffusion
coefficient. We find that, when y, >~y¢, the time scale as-
sociated with the defects becomes much longer than that
of the density variable, and thus the basic picture ob-
tained using the previous simplifying assumption still
holds: The parameters describing the metastable wells
and the coupling arrange themselves such that the cou-
pling enables the slow dynamics of the defects to effect
the density dynamics without destroying the metastable
wells.

We note that the approach we take in this paper is not
to explain how the defects bring the system to the ob-
served slowing down starting from the microscopic
description of the defects. Instead, we assume that the
system arranges itself to be on the critical surface associ-
ated with the MCT. We then investigate the conditions
that the defect degrees of freedom must satisfy to be on
this critical surface.

The cutoff mechanism of Das and Mazenko [13] will
eventually influence the very long time dynamics by gen-
erating an exponential decay. We note that there exists a
mechanism [17,11] that drives the cutoff effect to a small
value, so that the observed slowing down is retained. Al-
though in principle we can include this effect in the cou-
pled equations, we consider here the situation where this
is neglected. Another simplification made in this analysis
is to neglect the wave-number dependences of correlation
functions. In terms of the FNH description, one can con-
struct a wave-number dependent model, as shown in Ref.
[18]. Since this model is difficult to analyze numerically,
we focus here on the wave-number independent model.

In Sec. II we present a detailed formulation of the
FNH description of simple fluids, including the defect
variable. We then use the well-known field-theoretic
techniques to calculate the relevant nonlinear contribu-
tions to the glass transition. In Sec. III, the case where
the defect autocorrelation is a constant is considered in
detail as a first approximation. This will reproduce the
results of Ref. [14]. The analysis of the full model, which
includes the defect dynamics, is presented in Sec. IV. In
Sec. V, we discuss the cutoff mechanism and the tempera-
ture dependence of the viscosity in this formulation.

II. FNH WITH THE DEFECT DENSITY VARIABLE

In this section, we formulate the FNH description of
compressible fluids in detail, including the defect density
n as the additional slow variable. Using well-developed
field-theoretic methods, we calculate nonlinear correc-
tions to the density and defect autocorrelation functions
systematically.



5754

A. Generalized Langevin equations

Our starting point is the generalized Langevin equation
for the set of slow variables ¥,=p(x), g;(x),n(x), where
p is the mass density and g is the momentum density.
Here a labels the type of the field, the position x, and the
vector label i. Following the standard procedure de-
scribed by Ma and Mazenko [19], we have the equation
of motion given by

(2.1)

W, S8F
8¢5

a =Va[¢]_zra6—+®a ’
t ]

where F is the effective Hamiltonian, I_/a is the streaming
velocity governing the reversible dynamics given by

= SF
Va['wb]:E {Vja’lpﬁ} ’

5 s
and {1,,1;} is the Poisson bracket among the slow vari-

ables. The dissipative matrix I' ;5 and the Gaussian noise
®,, satisfy

(2.2)

(®,(1)@4(1")) =2k TT ,pd(t —1') . 2.3)

The effective Hamiltonian for v, is given by

F=Fx+F,[8p]+F,[8p,n], (2.4)
where Fy is the kinetic energy:
2
Fe=[ax B 2.5)

2p(x)

F,[8p] is the potential energy for the density fluctuation;
Sp=p—py, where p, is the average density; and F,[8p,n]
governs the defect density and its coupling to p. In gen-
eral, F,[8p] can be any local functional of 8p and the
spatial derivatives of 8p. In particular, one can study the
wave-number dependence of the structure factor by in-
cluding the spatial derivatives [18]. Recently it has been
claimed [20] that by including the wave-number depen-
dences one can effectively generate the von-Schweidler re-
laxation and the stretching. Analytical treatment in this
case, however, is very difficult. In the present case, we
consider the simple quadratic form that corresponds to a
wave-number independent structure factor,
F,[8p]= [ dx2[8px0)] (2.6)
2
where A is the flat inverse susceptibility and wave num-
bers are restricted to values less than a cutoff A.
F,[8p,n]in Eq. (2.4) is assumed to be of the form

F,[8p,n]= [ d*x[B&p(x)n(x)+h(n(x))], 2.7)

where we introduced the simple coupling term through
the coupling constant B. As discussed in Sec. I, we con-
struct the potential energy A (n) to be a double-well po-
tential [21], with the metastable defect density 7 associat-
ed with the higher well We parameterize 4 (n) such that
h(n) has three extrema at n =0, (1—o)n, and m:
h'(n)=en[n—(1—o)a](n—m), or upon integration,
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h(n)=en* %
n

ENIE

ERE]
w

+—(1—0) (2.8)

1
2

The parameter € gives the correct dimension for A (n) and
describes the overall scale of the potential energy. For
small positive o, Eq. (2.8) represents a double-well poten-
tial with the global minimum at » =0 and the metastable
minimum at 7z. We note that for small negative o, h (n)
in the above representation is also a double-well poten-
tial. In fact, A(n) is invariant under 0 —»o0'=—0/
(1—0) and A—7A'=(1—0c)A. Thus, in the following
analysis, only the absolute value of o will play a role.
We also note that, if =0, then h(n) develops an
inflection point at n =7. It is useful to define two dimen-
sionless parameters x and y that characterize the scale of
the coupling energy and the potential energy, respective-
ly:

Bpon » ent
Apg Ap}

if

x (2.9)

The potential and coupling energies are then completely
described by x, y, o, and 7. We consider the coupling en-
ergy term in Eq. (2.7) as a small distortion of the shape of
h(n). In particular, 7 is shifted to n *[8p], determined by

o="5 B8p+h'(n*[8p]) (2.10)
= = n . .
T A g
If we expand in powers of 5p,
5 5 |
n*l8pl=n|1+a, [ L |+ay | L | +---|, @11
0 Po
and we can easily calculate the coefficients a,a,. .. us-
ing Eq. (2.10),
2
g =—2, g=— |1 X a
oy o oy

We will later consider the fluctuation of n around this
shifted n*[6p]: dn=n—n*[8p]. Equation (2.11) indi-
cates that, for small |o|, the coupling energy x must be
sufficiently small such that

la,| <1, la,l<1 (2.13)

in order to have a sensible expansion.

Turning to the reversible streaming velocity terms in
the Langevin equations, we assume that the Poisson
brackets involving p and g are evaluated in the usual way,
as in Ref. [13]. The new variable » is a scalar quantity as
is p; thus we assume that the Poisson brackets for n have
the same structure as those for p. The only nonvanishing

elements involving n are
{g(x),n(x")}=VL[8(x—x")n(x)] . (2.14)

Since there are no Poisson brackets relating p to n and
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' s=0, the Langevin equation for p is simply the con-
tinuity equation

¥ _
ar VB

The Langevin equations for the remaining variables can
readily be found. Keeping up to quadratic terms in the
fluctuations, 8n =n —n*[8p] and 6p, we have

(2.15)

og' _ v g'g’
%—t———zvj(a;‘jﬂLaij)—ZV o
J
_ g
SL, +0,, (2.16)
j P
and
B my=—r |1+ |v- | & (6n)&
ot P P
+AT, V2 oy |22 | —ax |12 | |22 | |22
A o po || 7
8 2
+y(1+o) |22 | |+E, 2.17)
n
where
ol=8,{c}(8p)+1 A(8p)*} (2.18)
is the usual stress tensor with ¢3= 4p, and
0% =8,(4p3) |(x+oy) | 2L
o |1 |8 s_n]
o Po n
+y 1+— 5_" (2.19)
n

In Egs. (2.16) and (2.17) the dissipative coefficients and
the noises satisfy

(®,(x,0)0;(x',1")) =2k TL;;(x)8(x—x")8(¢ —¢') ,

(2.20)
(E(x,t)E(x',t"))=—2kp TT,V28(x—x")8(t —1t') ,

(2.21)

where L;(x)=—n¢(3V,;V;+8,;V*)—5,V;V; with the
bare shear and bulk v1scos1t1es Mo and Cos respectlvely,
and T',=(A4p3/n*)T,. For later use, we define the bare
longitudinal viscosity, ['o=§,+ $7,.

The Langevin equations [Egs. (2.15), (2.16), and (2.17)]
can be put into a field-theoretical form following stan-
dard Martin-Siggia-Rose procedures [22,23]. It essential-
ly amounts to introducing the hatted variable 1{/,, for each
field ¥, to enforce the equations of motion and integrat-
ing out the Gaussian noises to get the quadratic form in
¥, We introduce the local velocity field V, where

g=pV, to eliminate the 1/p nonlinearity in Egs. (2.16)
and (2.17) [24]. In this formalism, one can treat the non-
linearities stemming from the quadratic terms in the
equations of motion using standard perturbation theory
expansions. The nonlinear corrections to the zeroth-
order propagator Ggﬁ between ¥, and g are expressed
through Dyson’s equation,

“1_[6 ]_l_zaﬁy

where 3 5 is the self-energy.

From the linear terms in the equations of motion, we
can easily read off the elements of the zeroth-order in-
verse propagator [Ggﬁ]_l. By inverting this matrix, we
get various correlation and linear response functions. We
will be concerned only with the longitudinal parts of
those functions and will hereafter use the notation p,n in-
stead of 8p,8n, respectively, for convenience. One ob-
tains a physical interesting situation if

(2.22)

oyl (1, | <1 . (2.23)
oy
Then we have
0 1
~— 2.24
G, (q0) otiy, (2.24)
and
pow+ilog’
0 (qo)~—, 2.25
Gpp(qco) Dy(q) ( )
where y,=oyT,q% and Dy(q,0)=pylw*—gq%c})

+iwg®T,. The assumption in Eq. (2.23) is equivalent to
saying that we are considering the small |o| limit, which
will be justified self-consistently later when we consider
the conditions for the slowing down. Equation (2.25)
represents a standard form for the density autocorrela-
tion function. The defect autocorrelation function in Eq.
(2.24) has a very slow diffusive mode, o= —iy,, since it
is assumed that y, <<1. This signals a separation of time
scales between the density and the defect variables, as
noted in Sec. I.

We can achieve a further simplification by looking at
the following situation. As one approaches the glass
transition, we expect that, since the viscosity is getting
extremely large, one eventually reaches a point where
q*Ty/po>>w. It then follows that

2
= -1
6O (qa)~—— | L | 26T (2.26)
oy | po 4 o’*+y;
0 2B 7
Gpplq)==" PR 2.27
i + 287! Y Y
ng(q,a’)zi xrok b T2 - 2 + 2 - 2
Po | oy A o ty, o tyy
~——(x +0y)GL (q,0)
n |x+oy 0
+ = |=2=ZF |@ ,0) , 2.28
o oy op( Q@) ( )




5756 JOONHYUN YEO AND GENE F. MAZENKO 51

where y,= Ap3/T,. Therefore, in this approximation,
we have the density-defect correlation function as a linear
combination of the density and the defect autocorrelation
functions.

Nonlinear corrections to the zeroth-order response and
correlation functions are represented in terms of the self-
energies through Eq. (2.22). For the case where the sepa-
ration of time scales observed in the zeroth-order correla-
tion functions remains valid at high orders, one obtains
the following renormalized expressions:

1

(q0w)=G, . (qo)=———,
¥q,0)=6,(q,0 o+iy'(q,0)

(2.29)
¢(q,w)EGPﬁ(q,a})

p(q,0)0+iT(q,0)g>
plq,0)[0*—q%cXq,0)]+il(q,0)oq? ’

(2.30)

~

where the renormalizations of parameters are given by

plq,0)=py—iZ},(q,0) , (2.31a)
qcz(q,a))=qc(2,+2§p(q,w) , (2.31b)
9’T(q,0)=¢’T,+iZg (q,0) , (2.31c)
vo(qo)=y,+iZ, (q,0) . (2.31d)

Equations (2.29) and (2.30) are the fundamental equations
for the dynamics of density and defect fluctuations
without the cutoff effect. In the following, we calculate
explicitly nonlinear contributions to the renormalized

d’k

(q,0)=To+ [ “dre™ [ o)

where V'V and V'? are appropriate vertices to be evalu-
ated. In principle, the wave-number dependence of the
vertices can be considered [18], for example, by using the
spatial derivatives of the density fluctuations in the
effective Hamiltonian, Eq. (2.6). This involves, however,
very complicated wave-number integrals. In this
analysis, we consider the wave-number independent case.
A closely related approximation to this is that the corre-
lation functions can be factorized into wave-number and
time-dependent parts [25]. We assume here that
G, (q,1)=T()Y(2), G,,(q,1)=S(q)$(1), T(q) and S(q)
are the flat structure factors given by

n
Po

2
R
oy A

T(g)= , Slg)=

) (2.34)

for g <A and T (q)=S(q)=0 for g > A, where A is the
large momentum cutoff. Integrating over wave numbers
for the one-loop diagrams in Fig. 1 with the help of A, we
obtain

T {(V'"(q,k)G,, (k, 1)+ VP (q,k)G,,(k,1)]G,,(q—k,1)} ,

viscosity TI'(q,®) and the renormalized diffusion
coefficient y,(q,w), which will be reexpressed in terms of
G, .(q,®)and Gpﬁ(q,w).

B. One-loop evaluation of I'(q,®) and v, (q,®)

The density feedback mechanics of the MCT is realized
by calculating the nonlinear corrections to the bare
viscosity in the density correlation function of the form,
Eq. (2.30). In the present case, however, we have two
coupled equations, (2.29) and (2.30). Thus we must find
both kinetic coefficients, I'(q,w) and v,(q,»), to com-
plete the equations. In this section, we calculate one-loop
nonlinear contributions to those quantities.

As noted in Ref. [13], the renormalized longitudinal
viscosity in Eq. (2.31c) can also be represented in the hy-
drodynamic limit as

F(q,w)=I‘0——2§z~2§g(q,w) .

(2.32)
The relevant one-loop diagrams contributing to this self-
energy are listed in Fig. 1. As discussed in Ref. [13], the
diagrams coming from the convective nonlinearities (p V'V
terms in the equations of motion) just renormalize the
bare viscosity and are irrelevant to the density feedback
mechanism.

We note that the approximation given by Eq. (2.28)
generates two kinds of terms that are proportional to
G,,G,, and G,,G,,, respectively, in the expression for
I'(q,). In fact, one can easily see that the G,,G,, type
terms come from diagrams 1(b)-1(f) and the G,,G ,, type
terms from diagrams 1(a)—1(d). Thus we have

(2.33)

(a) (b)

© d

© )

FIG. 1. One-loop diagrams contributing to 2;(q,®).
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3 [+ .
F(w)=I‘o+kBT—A—2f dt e''[d Y(t)p(t)+d,d4(1)],
6mr° Yo

(2.35)

where the coefficients d; and d, are functions of x, y, and
o. We find, through detailed calculation of the diagrams,
that

2
d(x,y,0)=—4x 1+U; 24+ %
o oy
1+o | 2
—4|p(2+30)+2x? | —ZL 1+,
o oy
(2.36a)
dy(x,p,0)=1—dx | 11T | |14+ X
o ay
1+o |’ 2
+2 |p(2430)+2x2 g 1+=
o oy
(2.36b)

For later use, we define a dimensionless parameter con-
taining an explicit factor of the temperature,

__kBT A3
N Ap} 67 ’

'3 (2.37)

and ¢;=&d;, i =1,2.
The renormalization of y, is given by Eq. (2.31d). As
in Eq. (2.32), it is equivalent in the hydrodynamic limit to

2
A

F

Po

1 L
n

v(q0)=y,— 3oy (2.38)

32..(q0).

The one-loop diagrams that contribute to =,.(q,®) and
do not have the explicit I', factor, which is assumed to be
very small, are listed in Fig. 2. In the small |o| limit, the
major contribution to the self-energy comes from dia-
gram (b). Assuming there is no coupling between the
density feedback mechanism and the transverse viscosity,
which is the case for the flat structure factor case, we
finally obtain that

2
vu(@o)=y,— §f0°°dt e Y()d(t) . (2.39)

9
A

Equations (2.29) and (2.30), together with Egs. (2.35) and
(2.39), complete the specification of our model.

=)

(a) (b)

FIG. 2. One-loop diagrams contributing to 2.(q, ).
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III. MODEL WITH A CONSTANT DEFECT
AUTOCORRELATION FUNCTION

Metastability plays an important role in this model,
since defects spend a considerable amount of time
trapped within a well. During this period, we may as-
sume that the defect autocorrelation function can be re-
garded as a constant,

n

Po

2 1 B“l
G,,(q,0)=27 ?‘—};‘Tﬁ(w) , or Y(t)=1.

(3.1)

This approximation corresponds to the limit where one
takes the bare value of y, to zero. In this case, we note

_ that the nonlinear correction to ¥, also vanishes in the

long time limit, w—0, since the integrand in Eq. (2.39) is
a total derivative when ¢(¢)=1. Thus the self-
consistency of the approximation is maintained.

The coupled equations (2.29) and (2.30) then reduce to
a form dependent only on ¢(#), and we can make contact
with the standard treatment of the MCT [1]. It is impor-
tant to note that the MCT coefficients ¢, and ¢, are ex-
pressed in terms of the temperature and the parameters
describing the metastable potential and the coupling be-
tween the density and the defect variables. We now as-
sume that the system organizes itself to be on the critical
surface of the MCT, which is described below. This will
give relations among the metastability parameters.

The density feedback mechanism associated with the
representation of the type Egs. (2.30) and (2.33) was first
studied by Gotze [8]. According to Ref. [8], there exists
a critical line in the (c¢,,c,) space separating ergodic and
nonergodic regions, where the nonergodic phase is
characterized by the existence of the limit
f=lim,_, ,&(t), f>0. To study the critical condition in
terms of the parameters x, y, o, and £, we follow a more
general discussion of this model given by Kim and
Mazenko [11]. According to Ref. [11], the glass transi-
tion can be described by the following three parameters:

ao=(1—fIV(S), (3.2)
o,=(1—V'(f), (3.3)
A=L1—fPH"(f), (3.4)
where V(f)=H(f)—f/(1—f) and H(f)=3Nc,f" for

a general model containing higher-order terms in the
mode coupling integral. In Eq. (3.4), the parameter A is
directly related to the exponents of the sequence of time
relaxations [8]:

r’(1—a) _, _ TX1+b)
r'(1—2a) r(1+2b) °

The ideal glass transition is approached when both o
and o, are getting small. Let us consider the situation
where 0;=0 and the transition is approached by taking
o,—0. Solving Eqgs. (3.2)-(3.4) for ¢, and c,, we have

=A (3.5)

_aa—1 40, )
cl v + g Toted)

(3.6a)
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1 30,
2T T A
In terms of the parameters x, y, o, and &, the critical con-
dition is given by setting o,=0:
2A—1
7%

0(od) . (3.6b)

d,(x,y,0)= , (3.7a)

dz(x,y,0)=—1— (3.7b)

§}\42 > 2
We note that we are mainly concerned with the region
where |x| << 1 in order to be consistent with the fact that
we considered the coupling term as a small perturbation
shifting the metastable state as in Egs. (2.11) and (2.13).
We also require the solution be consistent with the as-
sumption, Eq. (2.23). We find that nontrivial solutions to
Eq. (3.7) satisfying Eqgs. (2.13) and (2.23) exist only if we
take o —0 simultaneously with x —0, while holding

X

x c, (3.8)
o

for some constant C. Let us briefly discuss the physical
meaning of Eq. (3.8). The small |o| limit is a sufficient
condition for a separation of the time scales between the
defect and the density variables, as seen from Eq. (2.23).
This indicates that the metastable wells become very shal-
low. If the coupling energy represented by |x| is stronger
than the above limit, i.e., |x| ~|o|, then the metastable
state given by Eq. (2.11) does not exist, since the condi-
tion Eq. (2.13) is violated. Thus, a strong coupling ener-
gy destroys the metastability of defects. On the other
hand, if |x|~|o|? we have from Eq. (2.36) d,=—8y,
d,=1+4y. Since y is always positive, d; <0, therefore
the system never reaches the critical surface given by Eq.
(3.7). Thus, if the coupling is weaker than the limit given
by Eq. (3.8), the slow dynamics of defects cannot affect
the density dynamics so that the density variable does not
slow down. Equation (3.8) gives the correct relation be-
tween the coupling energy and the barrier size of the de-
fects in the case of observed slowing down. In this limit,
Eq. (2.36) reduces to

2

d(x,y,0)=—8(y +C)—4 CT+3y+8C oc+0(c?),
(3.9a)

dy(x,9,0)=144y +2(3y +2C)o +0(0?) . (3.9b)

Thus, from Egs. (3.7) and (3.9), we have the critical con-
dition given in terms of the metastability parameters by

1

_2A+1 1
£A?

2EA?

-1
4

c=-|1 v 1 (3.10)

1
4

Furthermore, from Egs. (3.6) and (3.9), we can easily see
that the limit 0 —0 can be identified with o(—0 if

2
3 %+3y+sc =2(1—1)(3y +2C) . (3.11)

Therefore, as indicated in Sec. I, we have the situation

where the stretched dynamics is associated with the weak
coupling (x —0) and low barrier (0 —0) limit, which is
consistent with the separation of the time scales between
the density and the defect variables, as can be seen from
Eq. (2.23). The condition Eq. (3.11), when we use Eq.
(3.10), can be interpreted as a relation between the ex-
ponent parameter A and the temperature represented by
the parameter &,

§=_1_ — 3(2A—1)
A? 2[7+2A+V 402 +221+91]

(3.12)

Thus the exponents a and b are given as smooth functions
of temperature (see Fig. 3). The temperature dependence
of the parameters y and C that describe the potential
h(n) and its coupling to p is given by Eq. (3.10). All the
temperature dependences certainly do not give any indi-
cation of a special temperature. In the conventional MCT
[7,9], the control parameter o is assumed to have a tem-
perature dependence as oy~ Ty — T, which is the origin
of the sharp temperature dependences. In this case, how-
ever, o, is proportional to o with the weakly
temperature-dependent coefficient f(§),

oo=f(£)o=—2[3p+2C1EM1—1) 0 . (3.13)

We note that f(£) vanishes at the lower and upper
bounds of £ that correspond to A=1 and 1, respectively.
Therefore, the above analysis is not applicable to the re-
gion near the two end points of £&. Our basic picture of
the observed slowing down of the dynamics is that the
parameters describing the metastable wells and the cou-
pling, while displaying a smooth temperature depen-
dence, achieve the critical limit given by Eq. (3.8). In this
model, the transition is actually controlled by the param-
eter o, which is the size of barrier in the metastable po-
tential.

1.0 T T T
b

0.8 4

0.6 7
a

0.4

0.2} 4

0.0 . | |

0.0 1.0 2.0 3.0 4.0

3

FIG. 3. Exponents a and b as functions of temperature
represented by &£.
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IV. MODEL INCLUDING THE DYNAMICS
OF DEFECTS

The approximation, Eq. (3.1), made in the preceding
section, enabled us to treat the model analytically and to
obtain the critical condition between the shallow metasta-
ble wells and the weak coupling. However, when non-
linear corrections to the bare diffusion coefficient come
into play, the constraint Eq. (3.1) must be relaxed and
the dynamics of defects should be taken into account. In
this section, we analyze the full coupled equations, (2.29)
and (2.30), with (2.35) and (2.39). Since the nonlinear
couplings in these equations are highly nontrivial, an
analytical treatment is very difficult. In the time domain,
these equations are coupled integro-differential equations:

¢(t)+do¢(z)+ng¢(r)+ngo’dsH(r —s)d(s)=0, (4.1)

)+, (1) + fo‘ds G(t —s)(s)=0, 4.2)
where
H(t)=c f()p(t)+c 9% (1) , G(1)=—Ed(t)y(t), (4.3)

with the initial conditions #(0)=1(0)=1, ¢(0)=0, and
the definition £=(q/A)%. In the following, we integrate
them numerically. We fix d,=Q2=1 and study the re-
laxation of the system at fixed wave number ¢ /A=0.1 as
v, and the MCT coefficients ¢;,c, change. We use the
parametrization, Eq. (3.6), for ¢;,c, and the value of &
determined from Eq. (3.12).

We find that the system depends in a crucial way on
the value of y,. When the value of y, is large enough,
we expect that the defects quickly diffuse away and only
the density fluctuations are important. It is clearly seen
in the numerical integration of Egs. (4.1) and (4.2) for
fixed ¢;,c, and & in Fig. 4 The defect autocorrelation
function ¥(¢) decays exponentially for large y,. Thus, in
the large ¥, limit, the model essentially reduces to the

one originally considered by Leutheusser [7], where only
the ¢, term is present. For smaller values of y,, we ex-
pect that the system goes into the regime where the result
of the preceding section applies such that the slow dy-
namics of defects and the coupling between defects and
density fluctuations play an important role in stretched
dynamics. We can see from Figs. 4 and 5 that, as the
value of ¥, is decreased, ¥(¢) and ¢(¢) are more and more
stretched. We cannot, however, take ¥, to zero, since for
small enough ¥, such that y, <y{ for some y¢, ¥(¢)
starts to increase with time and consequently the model
becomes unphysical. This surprising result restricts the
value of the parameter y, to ¥, > y§. It is clear that ¥(¢)
and ¢(t) are stretched most when y, is very close to but
still larger than y{. In fact, the time scale for ¥(z) be-
come extremely large as ¥,—¥S so that it seems to ap-
proach some plateau value g as t— . We will discuss
later that only when y,=>~y{ is the time scale of (¢)
much greater than that of ¢(¢), ¢¥/(¢) more stretched than
¢(t), and the picture consistent with the basic picture ob-
tained in the preceding section.

It is well known that the later stage of relaxation of
(1) is well fit by the stretched exponential. As y,—y¢,
we find that the later stage of the relaxation of 9(¢) is also
well fit by a stretched exponential. We now use two
stretched exponential forms,

o(t)=fexp[—(t/7)VP], W(t)=gexp[—(t/T)F] (4.4

in Egs. (4.1) and (4.2). Since, for y, near y;, the time
scale 7' for ¥(¢) is much greater than 7 for ¢(z), we can
write

B B

T
’

exp[—(t/7')Fl=1— f (4.5)

We find the following qualitative relations among these
parameters from Eqgs. (4.1) and (4.2):

1.0 I I
d
0.8 ¢
ST FIG. 4. Defect autocorrela-
tion function (z) for fixed
(cy,¢,)=(0.556,2.778) and for
06 L 099 b | various y,: curve @, 2.0X1073
curve b, 1.8X1073 curve ¢,
¥(t) 1.75X 1073, curve d,
0.98 1.725X 1073, curve e,
P _ 1.7225X 1073, curve 5
097 | 1.7215X 1073, curve g,
' 1.721X1073, and curve A,
1.72X 1073, We can estimate
0.2 F 0.96 " " a 4 the value of e as
10 0 ;  10° 104 1L.72X 107 <y$ < 1.721 X 1073,
0.0 L —

10! 10? + 10
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FIG. 5. Density autocorrelation function ¢(z) for fixed

(¢y,¢,)=(0.556,2.778) and for various ¥,: curve a, 2.0X 1073,
curve b, 1.8 X 1073, curve ¢, 1.75X 1073, curve d, 1.725X 1073,
curve e, 1.7225X1073, curve f, 1.7215X1073, curve g,
1.721X 1073, and curve 4, 1.72X 1073,

_ l—cig & T((1+B)/B) |
2~ 1/B= ! ~1e L 4.
cof cef T(1/B) d , (46)
(y, — C)TZ—’I z
Vo T R+ 1/8) | 7
, B
+ fgBED —’”g Lz @7

Numerically, we find that the second term in the right-
hand side of Eq. (4.7) is much smaller than the first term.
Thus, we can rewrite Eq. (4.7) as

1

eT(1+1/8) “8)

(yy—yy)r'=
which means that 7' diverges as (y,—7¢)”! when
Yy —7e. By obtaining the parameters 3, ', 7, and 7'
from explicit curve fits of ¢(¢) and ¥(¢), using Eq. (4.4) for
various values of ¥, near y§, we find some evidence for
this relation. Without the second term in the right-hand
side of Eq. (4.6), it gives the expression for S of the con-
ventional MCT with ¢; and c,(g=1): B=—In(2)/
In((1—¢;)/c,f). However, in the presence of defect dy-
namics, Eq. (4.6) represents a more complicated expres-
sion for [ that depends on ' as well as y, —y<. We find
again evidence for this relation from our numerical data.

It is clear from these results that the separation of time
scales between the defect and the density fluctuations
occurs only when v, is very close to yS. We find that, as
a function of £, the value of y{ shows a smooth linear
temperature dependence. Under the previous assumption
that the slowing down corresponds to the o—0 (or
v,—0) limit, we were able to determine the temperature
dependence of the metastability parameters, except for
that of o itself. This was done by assuming that the sys-
tem arranges itself to be on the critical surface The
present analysis of the model, including the defect dy-
namics, determines the temperature dependence of the

JOONHYUN YEO AND GENE F. MAZENKO 51

parameter y, =oyT,q* when the system is on the critical
surface.

V. DISCUSSION

It was discovered by Das and Mazenko [13] that the
nonhydrodynamic correction due to E?P(q,w) included
in a representation like Eq. (2.30) cuts off the sharp na-
ture of the ergodic-nonergodic transition. In the pres-

- ence of the new variable n, however, we have a very

complicated expression for the density response function.
In order to see the cutoff effect, let the viscosity I" be-
come arbitrarily large. Then the expression reduces to

w
G ,p(q,0) = - i '
o5 D) olo+ig2, (q,co)]+lq2i>n(q’w)2ﬁp(q’m)
p

(5.1

If the self-energies =, and Eﬁp, as well as Eﬁp are set to
zero, G _.(t) reaches a finite value as time t— o. The
presence of these self-energies makes G pﬁ(t) decay slowly
and thus provides the cutoff effect. The evaluation of
these self-energies in principle can be done to yield com-
plicated expressions in terms of ¢(z) and ¥(¢). The
analysis, including this effect, can thus be performed, but
it will be a very difficult task, even numerically.
Throughout this paper, we have concentrated on the
time relaxation behavior of the system near the glass
transition. At this stage, it is important to note the impli-
cation of our model on the temperature dependence of
the viscosity: (7). Traditionally, many different expres-
sions have been used to fit the experimentally observed
7n(T). These include the Arrhenius form ~exp(A4 /T),
the Vogel-Fulcher form ~exp[B/(T —Tyr)], and the
power law ~|T —T,|~". These forms are able to fit the
experimental data only over limited temperature ranges

10.0 T T T

8.0+ E

20 M

FIG. 6. Parameter ¥ =1/(2a)+1/(2b) as a function of the
temperature represented by &.
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In the MCT, the temperature dependence of the viscosity
is given by [1].

W) ~7,T)~ ool 77, (5.2)

where ¥ =1/2a+1/2b. According to the conventional
MCT, o is assumed to be proportional to Ty— 7T and y
is temperature independent. Thus, the conventional
MCT predicts that the viscosity shows a power-law diver-
gence as the temperature approaches 7,. In our model,
the situation is quite different. The temperature depen-
dence of o is given by Eq. (3.13) without any special
temperature. More importantly, y =1/(2a)+1/(2b) in
this model is a function of temperature that is represent-
ed by the parameter £&. Thus we have

NE)=f(E)a(£)] 77, (5.3)
where f(£)=2[3y +2CJEM1—A)%. Therefore, the tem-

perature dependence of the viscosity is governed mainly
by the behavior of the exponent y(£) in Eq. (5.3) as a
function of &, i.e., Inn(§)~y(£). As shown in Fig. 6,
(&) increases as the temperature decreases. We do not
expect, however, that Eq. (5.3) can be used directly to fit
the experimental data, since a and b as functions of £ are
model dependent. Especially the rapid increase of Inn(§)
near the lower bound of £ should not be understood as a
physical result, as noted in Sec. III. But this analysis
clearly indicates that our model is consistent with the
generic feature of the observed 7(7), which increases
with decreasing temperature.
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